Revised

Supporting Information

Radical Additions of TEMPO to Ketenes: Correlation of Free Radical and Nucleophilic Reactivity

Annette D. Allen, Bernice Cheng, Michael H. Fenwick, Wen-wei Huang, Sharif Missiha, Daryoush Tahmassebi, and Thomas T. Tidwell*

> Department of Chemistry, University of Toronto Toronto, Ontario, Canada M5S 3H6

Experimental procedures, X-ray structural information, kinetic data, NMR and IR spectra

33 pages

Experimental

Reactions were conducted in dried glassware under an atmosphere of N_2 or Ar. Chromatography was carried out on silica gel. Mesitylene was dried over Na and distilled, and TEMPO was sublimed at 80 °C and 0.5 torr. Triethylamine was dried by distillation from CaH₂, and argon was bubbled through dehyrochlorination solutions for 1 h at the beginning of these reactions.

Reaction of phenylketene (8a) from Wolff rearrangement with TEMPO. A solution of diazoacetophenone (9a, 21.4 mg, 0.15 mmol) and TEMPO (58.6 mg, 0.38 mmol) in 1 mL toluene was refluxed for 48 h. Chromatography (10% EtOAc/hexanes) gave the bis(TEMPO) adduct **10a** (28.7 mg, 45%) as a white solid which was recrystallized from MeOH/H₂O, mp 90-92 °C; IR (CDCl₃) 1772 cm⁻¹; ¹H NMR (CDCl₃) δ 0.41 (s, 3, CH₃), 0.63 (s, 3, CH₃), 0.80 (s, 3, CH₃), 1.02 (s, 3, CH₃), 1.06 (s, 3, CH₃), 1.12 (s, 3, CH₃), 1.24 (s, 3, CH₃), 1.27 (s, 3, CH₃), 1.24-1.62 (m, 12, CH₂), 5.23 (s, 1, CHO), 7.20-7.50 (m, 5, Ph); ¹³C NMR (CDCl₃) δ 16.84, 17.02, 19.90, 20.09, 20.13, 20.52, 30.73, 31.85, 33.30, 34.07, 39.10, 39.30, 40.22, 59.48, 59.82, 60.30, 60.41, 87.59, 127.47, 127.80, 128.12, 139.32, 170.84; CIMS (isobutane) *m/z* 431 (MH⁺, 0.2), 276 (5), 156 (TEMPO⁺, 100), 142 (46), 126 (23); EIMS *m/z* 430 (M⁺, 0.2), 156 (TEMPO⁺, 100).

Reaction of phenylketene (8a) from phenylacetyl chloride with TEMPO. A solution of TEMPO (0.70 g, 4.48 mmol), phenylacetyl chloride (0.100 mL, 0.117 g, 0.756 mmol), and Et₃N (0.90 mmol) in 1.7 mL THF under argon was stirred 22 h at room temperature, and then 5 mL of CH_2Cl_2 and 5 mL NaHCO₃ solution were added. The layers were separated and the aqueous phase was extracted 3 times with CH_2Cl_2 , and the combined organic layers were dried over MgSO₄ and evaporated, and the residue

was recrystallized from pentane and then chromatographed (2.5% EtOAc/benzene) to give **10a** as a gum.

Reaction of E-Phenylvinylketene 8b with TEMPO. Diazoketone **9b** (30 mg, 0.32 mmol) and TEMPO (80 mg, 0.45 mmol) in 1 mL toluene was photolyzed 3 h with 300 nm light. The solvent was evaporated and the residue chromatographed (40% EtOAc/hexane) giving **10b** as an unseparated 3/1 E/Z mixture with ¹H NMR (CDCl₃) δ for both stereoisomers 0.8 to 1.8 (TEMPO), and 7.3 (m, Ph), and others assigned to *E*–**10b**: δ 5.25 (1, d, *J* = 6.9 Hz, CHOT), δ 6.02 (1, d, *J* = 16.2 Hz, CHCO₂), 7.15 (1, dd, *J* = 15.7, 7.2 Hz, CCH=C) and *Z*–**10b**: δ 4.95 (1, d, *J* = 8.4 Hz, CHOT), 6.3 (1, dd, *J* = 16.0, 8.6 Hz, CCH=C), and 6.70 (1, d, *J* = 15.8 Hz, CHCO₂T). IR (CDCl₃) 1734 cm⁻¹. ¹H NMR assignments for *E*–**10b** are in accord with those for *E*–ArCHOHCH=CHCO₂H: (a) Bourguignon, J.-J.; Schoenfelder, A.; Schmitt, M.; Wermuth, C.-G.; Hechler, V.; Charlier, B.; Maitre, M. *J. Med. Chem.* **1988**, *31*, 893-897; (b) Clawson, P.; Lunn, P. M.; Whiting, D. A. *J. Chem. Soc. Perkin Trans.* 1 **1990**, 159-162.

Reaction of Phenylvinylketene 8b from 4-Phenyl-3-butenoyl Chloride with TEMPO. A solution of TEMPO (200 mg, 1.28 mmol), Et₃N (51 mg, 5.0 mmol), and *E*-PhCH=CHCH₂COCl (69.3 mg, 0.381 mmol) in 10 mL degassed CH₂Cl₂ under argon was stirred 2 h over 500 mg 4A molecular sieves at room temperature. The solution was poured into NaHCO₃, extracted with CH₂Cl₂, and the organic extract was dried, concentrated, and chromatographed with a silica column (5% EtOAc, 2% Et₃N/benzene) to give **10b** (48.1 mg, 0.105 mmol, 28%) as a 2/1 *E*/*Z* mixture with ¹H NMR signals corresponding to those from the Wolff-rearrangement procedure, and ¹³C NMR (CDCl₃) δ 15.6, 15.7, 15.8, 18.9, 19.0, 19.2, 19.3, 19.4, 30.4, 30.6, 30.7, 32.2, 32.5, 33.4, 33.6, 37.7, 37.9, 38.0, 39.0, 58.3, 58.6, 58.8, 59.1, 59.3, 85.5 (*Z* CHO), 86.1 (*E* CHO), 117.7 (*E*

C C=O), 125.2, 125.8, 126.0, 126.3, 126.6, 127.1, 127.3, 132.4, 135.2, 139.3, 147.9 (*E* CHOT), 165.1 (*E* CO₂), 169.1 (*Z* CO₂). The NMR assignments were confirmed by 2D spectra (pp S-18 to S-24). The signal for *Z* (*C* C=O) is in the δ 126-127 cluster.

Reaction of Phenylalkynylketene (8c) with TEMPO. A solution of diazoketone **9c** (56.4 mg, 0.331 mmol) and TEMPO (146.8 mg, 0.940 mmol) in 4 mL toluene was photolyzed for 3.5 h with 350 nm light. The solvent was evaporated and the product chromatographed (25% EtOAc/hexanes) to give **10c** (43.4 mg, 0.0955 mmol, 29%). ¹H NMR (CCl₄) δ 1.15 (s, 9, 3 CH₃), 1.18 (s, 6, 2 CH₃), 1.28 (s, 3, CH₃), 1.29 (s, 3 CH₃), 1.32 (s, 3, CH₃), 1.2-1.8 (m, 12, CH₂), 6.43 (s, 1, CHO), 7.3-7.6 (m, 5, Ph); ¹³C NMR (CDCl₃) δ (CDCl₃) 16.36, 19.87, 19.95, 20.02, 20.20, 31.40, 31.79, 32.92, 38.47, 38.61, 38.87, 59.36, 59.62, 59.69, 99.09, 124.84, 127.81, 127.88, 130.64, 141.42, 164.11, 213.02; IR (CDCl₃) 1947, 1722 cm⁻¹; EIMS *m/z* 455 (M⁺, 3), 298 (90), 174 (80), 156 (100).

Reaction of *t*-**Butylketene (8d) with TEMPO**. To a solution of TEMPO (0.475 g, 3.04 mmol) in 3 mL THF was added freshly distilled Et₃N (0.233 mL, 0.169 g, 1.67 mmol) and *t*-BuCH₂COCl (0.211 mL, 0.204 g, 1.52 mmol), and the solution was stirred 24 h at room temperature. To the product was added 10 mL of CH_2Cl_2 and 10 mL of 10% NaHCO₃ solution, and the layers were separated. The aqueous layer was extracted 3 times with 10 mL protons of CH_2Cl_2 , and the combined organic layers were dried over MgSO₄ and the solvent evaporated. Chromatography (10% EtOAc in hexanes) and then recrystallization from pentane gave 10d: (97.3 mg, 0.237 mmol, 16%), mp 81-83 °C. ¹H NMR (CDCl₃) δ 1.090 (s, 9H, *t*-Bu), 1.094 (s, 6, 2 CH₃), 1.12 (s, 3, CH₃), 1.13 (s, CH₃), 1.21 (s, 6, 2 CH₃), 1.36 (s, 3, CH₃), 1.364 (s, 3, CH₃), 1.24-1.72 (m, 12, 6 CH₂), 4.33 (s, 1, CHO); ¹³C NMR (CDCl₃) δ 16.96, 17.28, 20.65, 20.76, 20.92, 21.10, 26.60 (3 CH₃), 32.81,

32.95, 33.36, 35.07, 35.46, 39.68, 39.76, 40.07, 40.92, 59.79, 60.06, 60.48, 61.75, 87.55, 170.65; IR (CH₂Cl₂) 1773 cm⁻¹, CIMS m/z 411 (MH⁺), 254, 156, 140, 126, 69; HRCIMS m/z calcd for C₂₄H₄₇N₂O₃ 411.3587, found 411.3576.

Reaction of Phenoxyketene (8e) with TEMPO. A solution of TEMPO (0.84 g, 5.38 mmol), Et₃N (2.15 mmol) and phenoxyacetyl chloride (0.309 g, 1.81 mmol) in 9.0 mL CH₂Cl₂ was stirred 60 h with 0.86 g of 4A molecular sieves at room temperature. The mixture was filtered through Celite and 10 mL of CH₂Cl₂ and 10 mL of NaHCO₃ solution were added, and the layers were separated. The aqueous layer was extracted 3 times with 10 mL aliquots of CH₂Cl₂ and the combined organic layers were dried with MgSO₄ and the solvent was evaporated to give a viscous liquid which was chromatographed (7% EtOAc/hexane) and rechromatographed (3% EtOAc/benzene) to give **10e** as a gum (470 mg, 1.054 mmol, 58%); IR (CH₂Cl₂) 1779 cm⁻¹; ¹H NMR (CDCl₃) δ 0.96 (s, 3, CH₃), 1.01 (s, 3, CH₃), 1.07 (s, 3, CH₃), 1.14 (s, 3, CH₃), 1.16 (s, 3, CH₃), 1.23 (s, 3, CH₃), 1.24 (s, 3, 1 CH₃), 1.27 (s, 3, CH₃), 1.31-1.67 (m, 12, 6 CH₂), 5.84 (s, 1, CHO), 6.96-7.29 (m, 5, Ph). ¹³C NMR (CDCl₃) δ 16.71, 16.88, 19.93, 20.24, 20.36, 31.40, 31.51, 32.56, 33.27, 38.94, 38.97, 39.84, 40.12, 59.68, 60.13, 60.16, 61.07, 103.22, 116.89, 121.90, 129.22, 156.55, 166.07. EIMS *m*/*z* 447 (M⁺, 0.5), 290 (M⁺ -OT, 12), 156 (TEMPO⁺), 140 (T⁺, 100). HREIMS m/z calcd C₂₆H₄₃N₂O₄ 447.3223, found 447.3203.

Reaction of tetramethyleneketene (12) with TEMPO. A mixture of 2diazocyclohexanone (20 mg, 0.16 mmol) and TEMPO (63 mg, 0.40 mmol) in 1.5 mL CDCl₃ was photolyzed 12 h with 300 nm light. The solvent was evaporated and the product chromatographed (10% EtOAc, hexanes) giving **14** (23 mg, 0.056 mmol, 35%) which was recrystallized from pentane, mp 105-107 °C: ¹H NMR (CDCl₃) δ 1.02 (s, 6, 2 CH₃), 1.10 (s, 6, 2 CH₃),1.15 (s, 6, 2 CH₃), 1.21 (s, 6, 2 CH₃), 1.2-1.8 (m, 12, CH₂), 1.8 (m, 4, β -CH₂ of C₄H₈), 2.0-2.2 (m, 2, α-CH of cyclopentyl *trans* to CO₂T), 2.4-2.6 (m, 2, α-CH of cyclopentyl *cis* to CO₂T); IR (CDCl₃) 1753 cm⁻¹; ¹³C NMR (CDCl₃) δ 16.91 (CH₂), 17.06 (CH₂), 20.61 (2 CH₃), 20.93 (2 CH₃), 26.70 (2 CH₂), 32.23 (2 CH₃), 33.45 (2 CH₃), 37.43 (2 CH₂), 39.40 (2 CH₂), 40.84 (2 CH₂), 59.74 (2 C), 60.32 (2 C), 91.91 (CO), 175.68 (CO₂); EIMS *m*/*z* 408 (M⁺, 0.2) 236 (23), 156 (69), 142 (66), 95 (93), 69 (100); CIMS *m*/*z* 409 (MH⁺, 0.3), 156 (100), 142 (68), 69 (19); HREIMS *m*/*z* calcd for C₂₄H₄₅N₂O₃ (MH⁺) 409.3430 found 409.3415.

Reaction of ketene 13 with TEMPO. A solution of 2-diazo-1-indanone (0.158 g, 1.00 mmol) and TEMPO (0.312 g, 2.00 mmol) in 1.5 mL CDCl₃ was irradiated for 48 h with 300 nm light. The solvent was evaporated and the residue chromatographed (5% EtOAc in hexanes) to give **15** as an oil (0.119 g, 27%) which was crystallized from pentane to give a solid, mp 101-103 °C. ¹H NMR (CDCl₃) δ 0.72 (s, 3, CH₃), 0.82 (s, 3, CH₃) 0.97 (s, 6, 2 CH₃), 1.00 (s, 3, CH₃), 1.04 (s, 3, CH₃), 1.16 (s, 3, CH₃), 1.22 (s, 3, CH₃); 1.2-1.7 (m, 12, 6 CH₂), 3.62 (d, 2, *J* = 14 Hz, CH), 4.30 (d, 2, *J* = 14 Hz, CH), 7.1-7.3 (m, 4, Ar). ¹³C NMR (CDCl₃) δ 16.72, 17.00, 19.85, 20.35, 20.39, 20.47, 31.70 (2 C), 31.92, 33.46, 39.02 (2 C), 40.14, 40.18, 40.26, 58.90, 59.93, 60.08 (2 C), 87.08, 122.51 (2 C), 126.46, 129.03, 142.83, 146.58, 170.81. IR (CDCl₃) 1759 cm⁻¹. EIMS *m*/*z* 443 (MH⁺), 156 (74), 142 (29), 126 (58), 83 (100), 69 (98). HRFABMS *m*/*z* calcd for C₂₇H₄₃N₂O₃ (MH⁺) 443.3274, found 443.3247.

Direct observation of ketenes generated by Wolff rearrangement

Photolysis of 1.0×10^{-4} M diazoacetophenone (**9a**) in isooctane purged with argon with 350 nm light for 5 min resulted in the disappearance of the UV spectrum of **9a** and the formation of a new spectrum due to **8a**, λ_{max} 248.5 nm, and $\varepsilon = 1.2 \times 10^4$, assuming complete conversion to **8a** (eq 4). Similar photolysis of **9a** (8.5×10^{-4} M in isooctane) showed another band at 378.0 nm, $\varepsilon = 47$, which may be ascribed to the $n \rightarrow \pi^*$ transition of **8a**. Photolysis of **9a** (8.5×10^{-4} M in isooctane) for 5 min with 300 and 350 nm light results in complete disappearance of the IR bands of **9a** at 2108 and 1639 cm⁻¹, and formation of a new band at 2117 cm⁻¹ for **8a** (lit^{7d} 2118 cm⁻¹ in CH₃CN). These absorption bands were fairly long-lived, but upon standing overnight at 5 °C the IR band at 2117 cm⁻¹ disappeared and was replaced by one at 1713 cm⁻¹, assigned as due to PhCH₂CO₂H (an authentic sample gave 1716 cm⁻¹ in isooctane).

Previously photolysis of the alkenyl and alkynyl substituted diazoketones **9b** and **9c** was utilized to form the alkenylketene **8b** and the alkynylketene **8c**,^{7d,9a} respectively, whose kinetics of hydration were measured when the ketene was generated by laser flash photolysis (LFP) with fast UV detection.^{9a} Similarly these ketenes generated by LFP were also detected by time resolved infrared (TRIR), and their kinetics of amination were measured.^{7d} Previous attempts^{9c} to detect the ketene **8c** by conventional IR were unsuccessful, and when the reaction was monitored in this way only the products of further photolysis of the ketene were observed (1- and 3-phenylpropyne, phenylallene).^{9c} Upon photolysis of the diazoketones **9b** and **9c** in isooctane in an IR cell using 300 and 350 nm lamps the disappearance of the IR absorptions due to **9b** and **9c** and the growth of absorptions due to **8b** (2116.5 cm⁻¹, lit^{7d} 2116 cm⁻¹) and **8c** (2130.9

cm⁻¹, lit^{7d} 2131.9 cm⁻¹) are observed, so that after irradiation for 1 min the absorptions due to **9b** and **9c** have decreased by 90%, and the bands due to **8b** and **8c**, respectively, have grown with equal intensity. Three min after ceasing photolysis the bands due to **8b** had disappeared.

Photolysis of **9b** and **9c** in isooctane led to almost complete disppearance of the absorption due to the diazoketones and the appearance of new strong maxima at 223 and 305 nm for **8b**, and 269 and 284 nm due to **8c**, and bands at 237 and 248 nm due to 1-phenylpropyne. The observed UV absorption of **8c** agreed well with the spectrum previously observed in H_2O .^{13c}

Ketene detection and kinetics

Kinetics of the reaction of the ketenes **8a-c**, and tetramethylene ketene **12** with TEMPO were measured by injecting 20 μ L of (3.6 to 8.5)×10⁻⁴ M of **8a-c** and 0.0115 M **12** in isooctane prepared as above into 1.2 mL of a TEMPO solution in isooctane, and observing the decrease in absorption at 249 nm (**8a**), 287 nm (**8b**), 267 nm (**8c**), and 390 nm (**12**). Good first order plots with stable infinity values were observed, and the derived rate constants are reported in Table 1.

The kinetics of **1** were measured by injecting 30 μ L of 0.0215 M **1** in isooctane into 2 mL TEMPO solution in isooctane which had been degassed with a stream of Ar and monitoring the decrease in absorption at 404 nm. For **7** kinetics were measured by injecting 12 μ L of 0.662 M **7** into 1.2 mL TEMPO solution in mesitylene and measuring the decrease in absorption at 385 nm. All rate constants (Table 1) are averages of at least two runs.

Table 3.	Rates of Ketene Reactions with TEMPO				
	(Ph ₂ C=C=O) (1))	$(Me_3SiC=C=O)_2 \qquad (7)$		
[TEMPO](M)	$k_{\rm obs} \ ({\rm s}^{-1} \times 10)^{2a}$		T(°C)	[TEMPO](M)	$k_{\rm obs} ({\rm s}^{-1} \times 10^{-3})^e$
0.1227	4.47		86.9^{b}	0.502	4.91
0.1002	3.65			0.287	2.82
0.0998	3.55			0.0721	0.752
0.0768	2.53		73.8 ^c	0.502	2.50
0.0601	2.24			0.360	1.81
0.0519	1.88			0.287	1.47
0.0401	1.39			0.216	1.04
0.0200	0.729			0.144	0.0688
0.00802	0.318			0.0721	0.0363
			58.8^{d}	0.502	0.883
				0.360	0.626
				0.144	0.259
		PhCH=C=O (8a)			
[TEMPO](M×10 10.62	4)	$k_{\rm obs} ({ m s}^{-1} { m \times} 10^{-3})^f \ 1.44$			

1.18

0.913

0.647

0.365

8.50

6.37

4.25

2.12

S	_	9
_		

Table 3 (cont'd)

		7	
E-PhCH=CHC	E-PhCH=CHCH=C=O (8b)		2)
[TEMPO] (M × 10^4)	$k_{obs} (s^{-1} \times 10^2)^h$	[TEMPO] (M)	$k_{obs} (s^{-1} \times 10^2)^{i}$
10.86	2.07	0.460	1.47
8.68	1.62	0.391	1.30
6.52	1.26	0.326	1.04
4.34	0.896	0.1833	0.646
2.17	0.441	0.0916	0.378
PhC=C	CCH=C=O (8c)		
[TEMPO](M×10	0 ⁴) $k_{\rm obs}({\rm s}^{-1} \times 10^{-2})^g$		

10.62	3.84
8.50	3.58
6.37	2.40
4.25	1.52
2.12	0.882

^{*a*}25 °C, in isooctane, $k_{obs} = (0.357 \pm 0.006) \text{ M}^{-1} \text{ s}^{-1} \text{ [TEMPO]} + (2.6 \pm 43.2) \times 10^{-5} \text{ s}^{-1}$

$${}^{b}k_{obs} = (9.68 \pm 0.12) \times 10^{-3} \text{ M}^{-1} \text{ s}^{-1} \text{ [TEMPO]} + (5.18 \pm 4.2) \times 10^{-5} \text{ s}^{-1}$$

$${}^{c}k_{\rm obs} = (5.04 \pm 0.07) \times 10^{-3} \,\mathrm{M}^{-1} \,\mathrm{s}^{-1} \,[\mathrm{TEMPO}] - (1.70 \pm 2.0) \times 10^{-5} \,\mathrm{s}^{-1}$$

$${}^{d}k_{obs} = (1.75 \pm 0.04) \times 10^{-3} \text{ M}^{-1} \text{ s}^{-1} \text{ [TEMPO]} + (0.21 \pm 1.71) \times 10^{-5} \text{ s}^{-1}$$

$$^{e}k_{2}^{\text{calc}} = 1.50 \times 10^{-4} \text{ M}^{-1} \text{ s}^{-1} (25.0 \text{ °C}), \Delta H^{\ddagger} = 13.8 \text{ kcal}/\text{ mol}, \Delta S^{\ddagger} = -29.6 \text{ cal } \text{K}^{-1} \text{ M}^{-1}$$

$$^{/2}$$
5°C in isooctane, $k_{obs} = (1.26 \pm 0.02) \text{ M}^{-1} \text{ s}^{-1} [\text{TEMPO}] + (1.07 \pm 0.13) \times 10^{-4} \text{ s}^{-1}.$

$${}^{8}k_{obs} = (37.4 \pm 1.9) \text{ M}^{-1} \text{ s}^{-1} [\text{TEMPO}] + (2.30 \pm 12.2) \times 10^{-4} \text{ s}^{-1}$$

$${}^{h}k_{obs} = (18.4 \pm 0.4) \text{ M}^{-1} \text{ s}^{-1} [\text{TEMPO}] + (6.20 \pm 2.71) \times 10^{-4} \text{ s}^{-1}$$

$${}^{i}k_{obs} = (2.98 \pm 0.11) \times 10^{-2} \text{ M}^{-1} \text{ s}^{-1} \text{ [TEMPO]} + (1.01 \pm 0.33) \times 10^{-3} \text{ s}^{-1}$$

Table 4.Comparative Reactivity of Ketenes with TEMPO and with H2O at 25 °C

	k_2 (TEMPO)	log <i>k</i> (TEMPO)	$k(H_2O)$	$\log k(H_2O)$
	$(M^{-1} s^{-1})$		(s^{-1})	
Ph ₂ C=C=O	0.357	-0.447	275 ^{<i>a</i>}	2.439
(Me ₃ SiC=C=O) ₂	1.50×10^{-4}	-3.824	0.307^{b}	-0.513
PhCH=C=O	1.26	0.100	4.77×10^{3a}	3.678
E-PhCH=CHCH=C=O	18.4	1.265	$5.76 \times 10^{3 c}$	3.760
PhC=CCH=C=O	37.2	1.570	7.16×10^{4} ^c	4.855
	2.98×10^{-2}	-1.553	136^{d}	2.134

^{*a*}Ref. 4c ^{*b*}Ref. 2c ^{*c*}Ref. 9a ^{*d*}Ref. 13c